
panda-server Documentation
Release 3.0b1-10-g54227ee-dirty

Michael Abbott, Tom Cobb

Sep 22, 2023

Contents

1 Configuration Interface 3
1.1 Example Commands . 3

2 Streaming Capture Interface 5

3 Building 7
3.1 Command Interface . 7
3.2 Blocks, Fields and Attributes . 13
3.3 Data Capture . 20
3.4 Building and Configuring Panda Server . 25
3.5 Configuration Files . 26
3.6 Extension Server . 30
3.7 Starting Panda Server . 31
3.8 Supporting Documentation . 32

Index 35

i

ii

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

The Panda socket server provides a bridge between the register interface to the FPGA firmware controlling the Panda
hardware and users and other software. The interface provided by this server is designed to be simple and robust.

The Panda firmware is structured into numerous functional blocks, with each block configured via a number of fields.
This structure is directly reflected in the functional interface provided by this server: most commands read or write
specific fields.

The socket server publishes two socket end points, one for configuration control the other for streamed data capture.
The configuration control socket accepts simple ASCII commands and returns all data in readable ASCII format. The
data capture socket supports no commands and simply streams captured data in a lightly structured binary format.

Source code https://github.com/PandABlocks/PandABlocks-server
Documentation https://PandABlocks.github.io/PandABlocks-server
Changelog https://github.com/PandABlocks/PandABlocks-server/blob/master/CHANGELOG.rst

Contents 1

https://github.com/PandABlocks/PandABlocks-server/actions?query=workflow%3A%22Code+CI%22
https://github.com/PandABlocks/PandABlocks-server/actions?query=workflow%3A%22Docs+CI%22
https://github.com/PandABlocks/PandABlocks-server
https://PandABlocks.github.io/PandABlocks-server
https://github.com/PandABlocks/PandABlocks-server/blob/master/CHANGELOG.rst

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

2 Contents

CHAPTER 1

Configuration Interface

Configuration commands are sent as newline (ASCII character 0x0A) terminated strings and all responses are also
newline terminated. Three basic forms of command are accepted:

Query commands. These commands must be terminated by a single ? character. The three possible responses are:
an error message, a single value, or a list of values.

Assignment commands. These commands contain an = character, and are used for assigning values to fields. The
two possible responses are an error message or OK.

Table assignment. Any command containing a < character (not preceded by ? or =) is a table assignment command.
The initial command may be followed by any number of lines of text, and must be terminated by an empty line.
The two possible responses are an error message or OK.

The four possible responses are:

ERR error-message An error response is always sent as ERR followed by an error message.

OK Successful completion of either form of assignment command generates the OK response.

OK =value Successful completion of a query command returning a single value returns the value preceded by OK =.

Multi-line response Successful completion of a query command returning multiple values returns each value on a
line by itself starting with ! and ends the sequence with a line containing only ..

1.1 Example Commands

In the examples below, the command sent is shown preceded by < and the response with >: this is the syntax used by
the helper tool simulation/tcp_client.py:

Simple server identification command including version information:

< *IDN?
> OK =PandA SW: 330bd94-dirty FPGA: 0.1.9 d1275f61 00000000

Interrogate list of fields provided by the TTLIN block:

3

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

< TTLIN.*?
> !VAL 0 bit_out
> !TERM 1 param enum
> .

Interrogate input termination for TTLIN1:

< TTLIN1.TERM?
> OK =High-Z

Set input termination:

< TTLIN1.TERM=50-Ohm
> OK

4 Chapter 1. Configuration Interface

CHAPTER 2

Streaming Capture Interface

All bit and position values received and generated by PandA can be captured on an internally generated trigger and
streamed to a data capture port. A variety of data capture, processing, and delivery options can be selected.

5

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

6 Chapter 2. Streaming Capture Interface

CHAPTER 3

Building

Before running make first copy the file CONFIG.example to CONFIG and edit according to your needs. If you
wish to build the server or the driver then a Zynq cross-compiler will be needed, and if you wish to build the driver
then a pre-build kernel will be needed – for this reference PandABlocks-rootfs and build the kernel target.

The panda-server Makefile supports four main build targets:

driver This builds the kernel driver required by the target server to communicate with the FPGA hardware. This
target can only be built if the cross-compiler is on the path or BINUTILS_DIR has been configured in CONFIG
to point to the directory containing the cross-compiler, and if KERNEL_DIR has been set to the location of
a cross-build of the kernel previously generated by PandABlocks-rootfs. The built driver is placed in
$(BUILD_DIR)/driver/panda.ko.

server This builds the PandA socket server to run on the target Zynq system. This target can only be built if the
cross-compiler is installed as for driver, but there is no dependency on the kernel build. The built server is
placed in $(BUILD_DIR)/server/server.

sim_server This builds the simulation version version of the PandA socket server. To run the server run the script
simserver in the root directory.

docs This builds the documentation and places the results in $(BUILD_DIR)/docs/html.

3.1 Command Interface

The default server port for the command interface is port 8888. All commands and responses are in ASCII with lines
separated with newline characters (ASCII character 0x0A).

All commands can be grouped into three forms (query, assignment, table assignment) and two targets (system and
fields). There exactly four possible response formats (ok, ok with value, error, multiple value). This section describes
this command interface.

The three basic command forms are:

7

https://github.com/PandABlocks/PandABlocks-rootfs

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

Name Format Description
Query target? Interrogates target for current value, can return error, single value or a list of multiple

values.
Assign-
ment

target=value Updates target with given value, can return error or success.

Table tar-
get<format

Command may be followed by lines of text, must be terminated by blank line.

The four basic command responses are:

Name Format Description
Success OK Returned assignment and table com-

mands to report successful update.
Value OK =value Successful return of single value

from query command.
Error ERR error Error string returned on any com-

mand failure
Multi value

! value
.

Any number of values can be re-
turned, each preceded by !, and fi-
nally . by itself indicates end of in-
put.

Command forms and their possible responses:

Form Responses
Query Error, Value, Multi value
Assignment Error, Success
Table Error, Success

Each individual query target will either return a single value or multi-value, as documented below.

Finally, there are two basic types of target: configuration commands and system commands.

3.1.1 Configuration Commands

The entire hardware interface to PandA is structured into “blocks” and “fields”, and each field may have a number of
“attributes” depending on the field type. This structure is reflected in the form of configuration commands which are
tabulated below:

Command Syntax Description
block[number].field? Return current value of field.
block[number].field=value Assign value to field.
block[number].field<[<][B] Write table data to field.
block[number].field.attr? Return current value of field attribute.
block[number].field.attr=value Assign value to field attribute.
block[number].*? Returns list of fields.
block[number].field.*? Returns list of field attributes.

In all of these commands the number after the block is optional if there is only one instance of that block, and is
ignored for the two .*? commands. See the description of the .TABLE fields for an explanation of the optional

8 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

format characters in the table write command.

3.1.2 System Commands

All system commands are prefixed with a leading * character. The simplest command is *IDN? which returns a
system identification string:

< *IDN?
> OK =PandA SW: 330bd94-dirty FPGA: 0.1.9 d1275f61 00000000

The available system commands are tabulated here and listed in more detail below:

Command Description
*IDN? Device identification.
*ECHO string? Echo.
*WHO? List connected clients.
*BLOCKS? List device blocks.

*DESC. block.field[.attr]?

*DESC. block.field[].subfield?

Show description for field, attribute, or table subfield.

*ENUMS. block.field[.attr]?

*ENUMS. block.field[].subfield?

List enumerations for field, attribute, or table subfield.

*CHANGES[.group]? Report changes to values. group can be any of CONFIG,
BITS, POSN, READ, ATTR, or TABLE.

*CHANGES[.group]=[E| S] Reset reported changes, group as above.
*CAPTURE? Report fields configured for capture.
CAPTURE.? List all fields that can be captured.
*CAPTURE.name? Interrogate capture options, name can be OPTIONS or

ENUMS.
*CAPTURE= Reset data capture.
*POSITIONS? Enumerate possible capture positions.
*BITS? Enumerate possible bit bus positions.
*VERBOSE=value Control command logging.
*PCAP.field? Special position capture status fields. field can be any of

STATUS, CAPTURED, or COMPLETION.
*PCAP.field= Position capture actions. field can be either ARM, or

DISARM.
*SAVESTATE= Triggers immediate save to file of the persistence file

state.
*CLOCK_FREQ? Returns currently configured system clock frequency

*IDN? Returns system identification string, for example the following:

OK =PandA SW: 1.1 FPGA: 0.1.9 d1275f61 00000000 rootfs: PandA 1.1

The first field after “PandA” is the software version, the second field is the FPGA version, the third the firmware
build number, and the fourth field identifies the supporting firmware. The final fields (prefixed rootfs:)
identify the underlying system on which the server is running.

3.1. Command Interface 9

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

Note that the rootfs: identification is new to version 1.1 of PandA.

*ECHO string? Returns string back to caller. Not terribly useful. Note that the echoed string cannot contain any
of ?, = or < characters, as this would cause the command to be mistaken for another command format! Example
usage:

< *ECHO This is a test?
> OK =This is a test

*WHO? Returns list of client connections, for example:

< *WHO?
> !2015-12-04T14:30:40.403Z config 127.0.0.1:34185
> .

The first field is the time the connection was made, the second field is either config or data depending on
whether the configuration or data port is connected, and the third field is the remote IP address and socket.

*BLOCKS? Returns a list of all the top level blocks in the system. The order in which the blocks is returned is
somewhat arbitrary. For example (here the list has been shortened in the middle):

< *BLOCKS?
> !TTLIN 6
> !OUTENC 4
...
> !CLOCKS 1
> !BITS 1
> !QDEC 4
> .

Block and field commands can be used to interrogate each block. The number after each block records the
number of instances of each block.

*DESC.block?

*DESC.block.field?

*DESC.block.field.attr?

*DESC.block.field[].subfield?

Returns description string for specified block, field, attribute, or table subfield eg:

< *DESC.TTLIN?
> OK =TTL input
< *DESC.TTLIN.TERM?
> OK =Select TTL input termination
< *DESC.TTLIN.TERM.INFO?
> OK =Class information for field

*ENUMS.block.field?

*ENUMS.block.field.attr?

*ENUMS.block.field[].subfield?

Returns list of enumerations for given field, attribute, or table subfield, if appropriate.

10 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

*CHANGES?

*CHANGES.CONFIG?

*CHANGES.BITS?

*CHANGES.POSN?

*CHANGES.READ?

*CHANGES.ATTR?

*CHANGES.TABLE?

Reports changes to the appropriate group of values. Changes are reported since the last request on the
connection, and on the first request the current value for every field will be reported. The *CHANGES?
command reports changes for all groups, otherwise one of the following groups can be selected:

CONFIG Configuration settings
BITS Bits on the system bus
POSN Positions
READ Polled read values
ATTR Attributes (included capture enable flags)
TABLE Table changes

For example:

< *CHANGES.CONFIG?
> !TTLIN1.TERM=High-Z
> !TTLIN2.TERM=50-Ohm
> !TTLIN3.TERM=High-Z
...
> !QDEC2.B=TTLIN1.VAL
> !QDEC3.B=TTLIN1.VAL
> !QDEC4.B=TTLIN1.VAL
> .

Here 804 (at the time of writing) lines have been deleted from the transcript! Now if we repeat the call
we see that no further changes have happened until something is actually changed:

< *CHANGES.CONFIG?
> .
< TTLOUT4.VAL=TTLIN3.VAL
> OK
< *CHANGES.CONFIG?
> !TTLOUT4.VAL=TTLIN3.VAL
> .

Note that for tables only the fact that the table has changed is shown, no attempt is made to show the
current table value:

< *CHANGES.TABLE?
> !PCOMP1.TABLE<
> !PCOMP2.TABLE<
> !PCOMP3.TABLE<
> !PCOMP4.TABLE<
> !PGEN1.TABLE<
> !PGEN2.TABLE<
> !SEQ1.TABLE<
> !SEQ2.TABLE<

(continues on next page)

3.1. Command Interface 11

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

(continued from previous page)

> !SEQ3.TABLE<
> !SEQ4.TABLE<
> .

*CHANGES=[E| S]

*CHANGES.CONFIG=[E| S]

*CHANGES.BITS=[E| S]

*CHANGES.POSN=[E| S]

*CHANGES.READ=[E| S]

*CHANGES.ATTR=[E| S]

*CHANGES.TABLE=[E| S]

These commands reset the change information for the corresponding group of information so that only
changes occuring after the reset are reported, or so that all changes are reported. If = or =E (for End) is
specified then only new changes are reported, if =S (for Start) then change reporting is reset to the start
as for a new connection. For example:

< TTLIN1.TERM=50-Ohm
> OK
< *CHANGES=
> OK
< *CHANGES.CONFIG?
> .

*CAPTURE? This returns a list of all positions and bit masks that will be written to the data capture port. This list is
controlled by setting the .CAPTURE attribute on the corresponding position fields.

CAPTURE.? This returns a list of all fields that can be configured for capture. This includes all pos_out and
ext_out fields.

*CAPTURE.OPTIONS? Lists the available capture options for pos_out fields. The available options are “Value”,
“Diff”, “Sum”, “Mean, “Min”, “Max”, “StdDev”. Availability of the last option “StdDev” depends on the FPGA
configuration.

*CAPTURE.ENUMS? Generates a curated list of capture option selections. This is designed to be used for present-
ing lists of available capture options as an enumeration. Returns the same as calling *ENUMS.name.field.
CAPTURE? on any pos_out field.

*CAPTURE= This resets all .CAPTURE flags to zero so that no data will be captured.

*POSITIONS? This command lists all available position capture fields in order.

*BITS? This command lists all available bit bus positions, but not including the special values ZERO and ONE.

*VERBOSE=value If *VERBOSE=1 is set then every command will be echoed to the server’s log. Set *VERBOSE=0
to restore normal quiet behaviour.

*PCAP.STATUS?

*PCAP.CAPTURED?

*PCAP.COMPLETION?

Interrogates status of position capture:

12 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

STATUS Returns string with three fields: “Busy” or “Idle”, followed by the number of connected
readers, and the number taking data.

CAP-
TURED

Returns number of samples captured in the current or most recent data capture.

COMPLE-
TION

Returns completion status from most recent data capture, as listed in the table below.

The completion codes have the following meaning:

Busy Capture in progress.
Ok Capture completed without error or intervention.
Disarmed Capture was manually disarmed by *PCAP.DISARM= command.
Framing error Data capture framing error, probably due to incorrectly configured capture.
DMA data error Internal data error, should not occur.
Driver data over-
run

Data capture too fast, internal buffers overrun. Can also occur if PandA processor
overloaded.

*PCAP.ARM=

*PCAP.DISARM=

Top level capture control:

ARM Initiates data capture. Will fail if capture already in progress, or no fields configured for
capture.

DIS-
ARM

Halts ongoing data capture.

*SAVESTATE= Updates the persistence state file (as configured on the command line when launched) with the
current state. Returns after a file system sync call, so it is safe to power-off the system after this command has
completed.

*CLOCK_FREQ? Returns currently configured FPGA clock frequency as used to convert between times in natural
units and times in clock ticks.

3.2 Blocks, Fields and Attributes

The set of hardware blocks can be interrogated with the *BLOCKS? command:

< *BLOCKS?
> !TTLIN 6
> !OUTENC 4
> !PCAP 1
> !PCOMP 4
> !TTLOUT 10
> !ADC 8
> !DIV 4
> !INENC 4
> !SLOW 1
> !PGEN 2
> !LVDSIN 2

(continues on next page)

3.2. Blocks, Fields and Attributes 13

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

(continued from previous page)

> !POSITIONS 1
> !POSENC 4
> !SEQ 4
> !PULSE 4
> !SRGATE 4
> !LUT 8
> !LVDSOUT 2
> !COUNTER 8
> !ADDER 1
> !CLOCKS 1
> !BITS 1
> !QDEC 4
> .

For each block the number after the block tells us how many instances there are of the block. Each block is controlled
and interrogated through a number of fields, and the block.*? command can be used to interrogate the list of fields:

< TTLIN.*?
> !VAL 1 bit_out
> !TERM 0 param enum
> .

This tells us that block TTLIN has two fields, TTLIN.VAL and TTLIN.TERM. The first field after the field name is a
sequence number for user interface display, and the rest of each response describes the “type” of the field. In this case
we see that TTLIN.VAL is a bit_out field, which means can be used for bit data capture and can be connected to
any param bit_mux field as a data source.

Each field has one or more attributes depending on the field type. The list of attributes can be interrogated with the
block.field.*? command:

< TTLIN.VAL.*?
> !CAPTURE_WORD
> !OFFSET
> !INFO
> .
< TTLIN.TERM.*?
> !INFO
> .

All fields have the .INFO attribute, which just repeats the type information already reported, eg TTLIN1.VAL.
INFO? returns bit_out (note that a block number must be specified when interrogating fields and attributes).

3.2.1 Field Types

Each field type determines the set of attributes available for the field. The types and their attributes are documented
below.

14 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

Field type Description
param sub-
type

Configurable parameter. The subtype determines the precise behaviour and the available at-
tributes.

read subtype A read only hardware field, used for monitoring status. Again, subtype determines available
attributes.

write sub-
type

A write only field, subtype determines possible values and attributes.

time Configurable timer parameter.
bit_out Bit output, can be configured as bit input for bit_mux fields.
pos_out Position output, can be configured for data capture and as position input for pos_mux fields.
ext_out ex-
tra

Extended output values, can be configured for data capture, but not available on position bus.

bit_mux Bit input with configurable delay.
pos_mux Position input multiplexer selection.
table Table data with special access methods.

param subtype All fields of this type contribute to the *CHANGES.PARAM change group and are used to config-
ure the behaviour of the corresponding block. Fields of this type are used for input configuration and other
behavioural settings.

read subtype All fields of this type contribute to the *CHANGES.READ change group, but are only checked when
either the field is read or the change group is polled. Fields of this type are used for monitoring the internal
status of a block, and they cannot be written to.

write subtype Fields of this type can only be written and are used for immediate actions on a block. The action
subtype is used to support actions without any parameters, for example the following command forces a soft
reset on the given pulse block:

< PULSE1.FORCE_RESET=
> OK

time Fields of this type are used for configuring delays. They also contribute to *CHANGES.PARAM. The following
attributes are supported by fields of this type:

UNITS This attribute can be set to any of the strings min, s, ms, or us, and is used to interpret how values
read and written to the field are interpreted.

RAW This attribute can be read or written to report or set the delay in FPGA ticks.

MIN This reports the minimum valid value for this field in the currently selected units.

The UNITS attribute determines how numbers read or written to the field are interpreted. For example:

< PULSE1.DELAY.UNITS=s
> OK
< PULSE1.DELAY=2.5
> OK
< PULSE1.DELAY.RAW?
> OK =312500000
< PULSE1.DELAY.UNITS=ms
> OK
< PULSE1.DELAY?
> OK =2500

Note that changing UNITS doesn’t change the delay, only how it is reported and interpreted.

bit_out Fields of this type are used for block outputs which contribute to the internal bit system bus, and they
contribute to the *CHANGES.BITS change group. They can be captured via the appropriate PCAP.BITSn

3.2. Blocks, Fields and Attributes 15

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

block as reported by the CAPTURE_WORD attribute.

The following attributes are supported by fields of this type:

CAPTURE_WORD This identifies which pos_out value can be used to capture this bit.

OFFSET This is the bit offset into the captured word of this particular bit.

For example:

< TTLIN1.VAL.CAPTURE_WORD?
> OK =PCAP.BITS0
< TTLIN1.VAL.OFFSET?
> OK =2

This tells us that if PCAP.BITS0 is captured then TTLIN1.VAL can be read as bit 2 of this word, counting
from the least significant bit.

The field itself can be read to return the current value of the bit.

pos_out Fields of this type are used for block outputs which contribute to the internal position bus, and they con-
tribute to the *CHANGES.POSN change group. The following attributes support capture control:

CAPTURE This can be set to manage capture of this field. One of the following enumeration values can be
written to this field:

Value Description
No Capture is disabled for this field.
Value The value at the time of trigger will be captured.
Diff The difference of values is captured.
Sum The sum of all valid values is captured. This is a 64-bit value, and may be further scaled

if PCAP.SHIFT_SUM is set.
Mean The average of all valid values is captured.
Min The minimum of all valid values is captured.
Max The maximum of all valid values is captured.
Min Max Both minimum and maximum values are captured.
Min Max
Mean

All three values, minimum, maximum, average are captured.

The following attributes support formatting of the field when reading it: the current value is returned subject to
the formatting rules described below.

OFFSET, SCALE These numbers can be set to configure the conversion from the underlying position to the
value captured when scaling is enabled and read from the SCALED attribute.

UNITS This field can be set to any UTF-8 string, and is provided for the convenience of the user interface and
is returned as part of the data capture heading.

SCALED This returns the scaled value computed as

value * scale + offset

ext_out extra Fields of this type represent values that can be captured but which are not present on the position
bus. These fields also support one capture control field:

CAPTURE As for pos_out, can be set to control capture of this field:

Value Description
No This field will not be captured.
Value This field will be captured.

16 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

The extra field determines the detailed behaviour of this field, and will be one of the following values:

extra value Description
timestamp Timestamps in clock ticks with optional scaling to seconds on data capture.
samples Special internal field for counting captured samples.
bits Used to implement bit-bus readout fields. Fields of this sub-type implement an extra BITS

field.

Fields of type ext_out bits implement an extra attribute:

BITS This returns a list of all bit fields associated with this field. Fields of this type can be used to capture a
snapshot of the bit bus at the trigger time.

bit_mux Bit input selectors for blocks. Each of these fields can be set to the name of a corresponding bit_out
field, for example:

< TTLOUT1.VAL=TTLIN1.VAL
> OK

There are two attributes:

DELAY This can be set to any value between 0 and MAX_DELAY to delay the bit input to the block by the
specified number of clock ticks.

MAX_DELAY This returns the maximum delay that can be set for this input.

pos_mux Position input selectors for blocks. Each of these fields can be set to the name of a corresponding pos_out
field, for example:

< ADDER1.INPA=ADC2.OUT
> OK

table Values of this type are used for long tables of numbers. This server imposes no structure on these values apart
from treating them as an array of 32-bit integers.

Tables values are written with the special < syntax:

block number.field< Normal table write, overwrite table
block number.field<< Normal table write, append to table
block number.field<B Base-64 table write, overwrite table
block number.field<<B Base-64 table write, append to table

For “normal” table writes the data is sent as a sequence of decimal numbers in ASCII, and the whole sequence
must be terminate by an empty blank line. For base-64 writes the data is sent in base-64 format, for example:

< SEQ3.TABLE<B
< TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGJ5IGhpcyByZWFzb24sIGJ1
<
> OK
< SEQ3.TABLE.LENGTH?
> OK =12

Note that when data is sent in base-64 format, each individual line must encode a multiple of four bytes, other-
wise the write will be rejected.

The following attributes are provided by this field type:

MAX_LENGTH This is the maximum number of 32-bit words which can be stored in the table.

3.2. Blocks, Fields and Attributes 17

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

LENGTH This is the current number of words in the table.

B This read-only attribute returns the content of the table in base-64.

FIELDS This returns a list of strings which can be used to interpret the content of the table. Each line returned
is of the following format:

left:right field-name subtype

Here left and right are bit field indices into a single table row, consisting of a number of 32-bit words
concatenated (in little-endian order) with bits numbered from 0 in the least significant position up to
32*ROW_WORDS-1, and left >= right. The name of the field is given by field-name, and subtype can
be one of int, uint, or enum. If subtype is enum then the list of enums can be interrogated through the
command

*ENUMS.block.table[].field?

where block, table, field are appropriate names.

ROW_WORDS Returns the number of 32-bit words in a single row of the table. This can be used to help interpret
the FIELDS result.

3.2.2 Field Sub-Types

The following field sub-types can be used for param, read and write fields.

uint [max-value] This is the most basic type: the value read or written is an unsigned 32-bit number. There is one
fixed attribute:

MAX This returns the maximum value that can be written to this field.

int Similar to uint, but signed, and there is no upper limit on the value.

scalar scale [offset [units]] Floating point values can be read or written, and are converted from and to the under-
lying signed integer type via the equations below:

value = scale * raw + offset
raw = (value - offset) / scale

The following attributes are supported:

UNITS Returns the configured units string.

RAW Returns the underlying unconverted integer value.

SCALE Returns the configured scaling factor.

OFFSET Returns the configured scaling offset.

bit A value which is 0 or 1, there are no extra attributes.

action A value which cannot be read and always writes as 0. Only useful for write fields.

lut This field sub-type is used for the 5-input lookup table function calculation field. This field can be set to any
valid logical expression generated from inputs A to E using the standard operators &, |, ^, ~, ?: from C together
with = for equality and => for implication (A=>B abbreviates ~A|B). All operations have C precedence, = has
the same precedence as == in C, and => has precedence between | and ?:.

The following attribute is supported:

RAW This returns the corresponding lookup table assignment as a 32-bit number.

For example:

18 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

< LUT2.FUNC=A=>B?C:D
> OK
< LUT2.FUNC?
> OK =A=>B?C:D
< LUT2.FUNC.RAW?
> OK =0xF0CCF0F0

enum Enumeration fields define a list of valid strings which can be written to the field. To interrogate the list of valid
enumeration values use the *ENUMS command, for example:

< *ENUMS.TTLIN1.TERM?
> !High-Z
> !50-Ohm
> .

time Converts between time in specified units and time in FPGA clock ticks. The following attributes are supported:

UNITS This attribute can be set to any of the strings min, s, ms, or us, and is used to interpret how values
read and written to the field are interpreted.

RAW This attribute can be read or written to report or set the delay in FPGA ticks.

3.2.3 Summary of Sub-Types

Sub-type Attributes Description
uint MAX Possibly bounded 32-bit unsigned integer value
int Unbounded 32-bit signed integer value
scalar RAW, UNITS, SCALE, OFFSET Scaled signed floating point value
bit Bit: 0 or 1
action Write only, no value
lut RAW 5 input lookup table logical formula
enum LABELS Enumeration selection
time RAW, UNITS Time intervals converted to FPGA ticks

3.2. Blocks, Fields and Attributes 19

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

3.2.4 Summary of Attributes

Field (sub)type Attribute Description R W C M
(all) INFO Returns type of field R
uint MAX Maximum allowed integer value R
scalar RAW Underlying integer value R W

UNITS Configured units for scalar R
SCALE Configured scaling factor for scalar R
OFFSET Configured scaling offset for scalar R

lut RAW Computed Lookup Table 32-bit value R
time UNITS Units and scaling selection for time R W C

RAW Raw time in FPGA clock cycles R W
MIN Minimum valid setting (for type only) R

bit_out CAPTURE_WORD Capturable word containing this bit R
OFFSET Offset of this bit in captured word R

bit_mux DELAY Bit input delay in FPGA ticks R W C
MAX_DELAY Maximum valid delay R

pos_out CAPTURE Position capture control R W C
OFFSET Position offset R W C
SCALE Position scaling R W C
UNITS Position units R W C
SCALED Position after applying scaling R

ext_out bits BITS List of bit_out fields R M
table MAX_LENGTH Maximum table row count R

LENGTH Current table row count R
B Table data in base-64 R M
FIELDS Table field descriptions R M
ROW_WORDS Number of words in a table row R

Key:

R Attribute can be read

W Attribute can be written

C Attribute contributes to *CHANGES.ATTR change set

M Attribute returns multiple value result.

3.3 Data Capture

3.3.1 Capture Configuration

Both pos_out and ext_out fields can be configured for data capture through the data capture port by setting the
appropriate value in the CAPTURE attribute. The possible capture settings depend on the field type as follows:

pos_out

20 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

Value Description
No Capture is disabled for this field.
Value The value at the time of trigger will be captured.
Diff The difference of values is captured.
Sum The sum of all valid values is captured. This is a 64-bit value, and may be further scaled if

PCAP.SHIFT_SUM is set.
Mean The average of all valid values is captured.
Min The minimum of all valid values is captured.
Max The maximum of all valid values is captured.
Min Max Both minimum and maximum values are captured.
Min Max
Mean

All three values, minimum, maximum, average are captured.

ext_out

Value Description
No This field will not be captured.
Value This field will be captured.

3.3.2 Data Capture Port

The default server port for the data interface is port 8889. The initial exchange is in ASCII with newline separated
lines, subsequent data communication is as selected in the initial connection.

Data capture proceeds as follows:

1. Connection to the data server port, default 8889.

2. Send capture options string followed by newline. The newline character is mandatory.

3. The server will respond with OK unless there was an error parsing the capture options, or if the NO_STATUS
option was specified. If there was an error then the server responds with ERR followed by an error message and
the connection is closed.

4. The server will now ignore all further input from the client, and the connection will pause until data capture is
started via the *PCAP.ARM= command.

5. At the beginning of a round of data capture or “experiment”, a header detailing the data to be sent and data
format is sent in ASCII followed by an empty line. If NO_HEADER was selected then the header and blank line
are omitted.

6. Captured data is sent in the requested format until the experiment is complete (either internally disarmed or
disarmed via the *PCAP.DISARM= command), or there is a communication problem.

7. At the end of the experiment a completion code is sent as a single line in ASCII starting with END, unless
NO_STATUS was specified.

8. Unless ONE_SHOT was specified the server will pause until the next experiment (step 4).

Capture Options

A line of capture options must be sent after initial connection before any data will be sent. This is a list of any of the
following options separated by whitespace ending with a newline character.

3.3. Data Capture 21

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

ASCII Specifies that data is to be sent as ASCII numbers. 1 D
BASE64 Binary data will be sent as a stream of base64 strings. 1
FRAMED Binary data is sent as a sequence of sized frames. 1
UNFRAMED Binary data is sent as a raw stream of bytes. 1 R
SCALED All scalable data is scaled and sent as doubles. 2 D
RAW The captured binary data is sent without processing. 2
NO_HEADER The data header is omitted. R
NO_STATUS The connection and end of experiment status strings are omitted. R
ONE_SHOT Only one experiment will be transmitted. R
XML The header will be sent in XML format.
BARE Selects UNFRAMED RAW NO_HEADER NO_STATUS ONE_SHOT
DEFAULT Default options. D

Key:

D Default option if no other option specified.

R Options selected in response to BARE option.

1 Data transmission formats, one of these will be selected.

2 Data processing formats, one of these will be selected.

Data Transport Formatting

Note that all binary data is sent with the lowest order byte first.

ASCII Each value is formatted as an ASCII number, and transmitted with one line per captured sample.

BASE64 The stream of binary data is converted to base64 strings and transmitted as a series of lines until the ex-
periment is complete. Each base64 string is preceded by a single space, so the end of the stream is easy to
identify.

FRAMED In FRAMED mode the captured binary data is sent in blocks of unpredictable size. Each block is preceded
by 8 bytes. The first four bytes are BIN followed by space, the remainind four bytes are the length of the data
block in bytes including the 8 byte header.

UNFRAMED In UNFRAMED mode the captured binary data is sent as is. In this mode it is difficult or impossible to
reliably detect the end of the data stream, so normally this is best combined with NO_STATUS and ONE_SHOT.

Data Header

At the beginning of each experiment the following information is sent:

arm_time UTC Timestamp sampled in correspondence of the ARM command
missed Number of samples missed by late data port connection.
process Data processing option: Scaled, Unscaled, or Raw.
format Data delivery formatting: ASCII, Base64, Framed, or Unframed.
sample_bytes Number of bytes in one sample unless format is ASCII.
fields Information about each captured field.

For each field the following information is sent:

22 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

name Name of captured field.
type Data type of transmitted field after data processing.
capture Value of CAPTURE field used to enable this field.
scale Scaling factor if scaled field. S
offset Offset if scaled field. S
units Units string if scaled field. S

Key:

S Only present if scaled field

If the XML option is selected the header is structured as a single header element containing data and fields
elements.

The type field can be one of the following strings:

String Bytes Description
int32 4 Used for scalable values sent in unscaled modes.
uint32 4 Used for bit masks.
int64 8 Used for raw ADC mean and unscaled 48-bit encoder data.
double 8 Used for all scaled values when SCALED selected.

Experiment Completion

At the end of each capture experiment a single line is sent, eg:

END 10 Ok

This specifies the number of samples sent and gives a completion code, which can be one of the following values:

Ok Experiment completed without intervention.
Disarmed Experiment manually completed by *PCAP.DISARM= command.
Early disconnect Client disconnect detected.
Data overrun Client not taking data quickly or network congestion, internal buffer overflow.
Framing error Triggers too fast for configured data capture.
Driver data overrun Probable CPU overload on PandA, should not occur.
DMA data error Data capture too fast for memory bandwidth.

High performance mode

To get the highest performance, use FRAMED RAW mode. This activates a special passthrough mode which avoids
copying memory as much as possible. In tests it has been capable of sustaining 60MBytes/s when panda-webcontrol
is not installed. The downside to this mode is that if capture fails for any reason, then the last Framed block of data
that the server sent should be discarded as it will have been corrupted while being sent.

Examples

Some examples of data capture for different options follow:

Default:

3.3. Data Capture 23

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

arm_time: 2021-05-26T10:34:06.133Z
missed: 0
process: Scaled
format: ASCII
fields:
PCAP.CAPTURE_TS double Trigger
COUNTER1.OUT double Triggered scale: 1 offset: 0 units:
COUNTER2.OUT double Triggered scale: 1 offset: 0 units:
PGEN1.OUT double Triggered scale: 1 offset: 0 units:

1e-06 0 0 262143
3e-06 0 0 262142
5e-06 0 0 262141
7e-06 0 0 262140
9e-06 0 0 262139

END 5 Ok

BASE64:

arm_time: 2021-05-26T10:34:06.133Z
missed: 0
process: Scaled
format: Base64
sample_bytes: 32
fields:
PCAP.CAPTURE_TS double Trigger
COUNTER1.OUT double Triggered scale: 1 offset: 0 units:
COUNTER2.OUT double Triggered scale: 1 offset: 0 units:
PGEN1.OUT double Triggered scale: 1 offset: 0 units:

ju21oPfGsD4AAAAAAAAAAAAAAAAAAAAAAAAAAPj/D0FU5BBxcyrJPgAAAAAAAAAAAAAAAAAAAAAA
AAAA8P8PQfFo44i1+NQ+AAAAAAAAAAAAAAAAAAAAAAAAAADo/w9BuF8+WTFc3T4AAAAAAAAAAAAA
AAAAAAAAAAAAAOD/D0E/q8yU1t/iPgAAAAAAAAAAAAAAAAAAAAAAAAAA2P8PQQ==

END 5 Ok

XML:

<header>
<data arm_time="2021-05-26T10:35:06.107Z" missed="0" process="Scaled" format="ASCII" /
→˓>
<fields>
<field name="PCAP.CAPTURE_TS" type="double" capture="Trigger" />
<field name="COUNTER1.OUT" type="double" capture="Triggered" scale="1"
offset="0" units="" />
<field name="COUNTER2.OUT" type="double" capture="Triggered" scale="1"
offset="0" units="" />
<field name="PGEN1.OUT" type="double" capture="Triggered" scale="1" offset="0"
units="" />
</fields>
</header>

1e-06 0 0 262143
3e-06 0 0 262142
5e-06 0 0 262141
7e-06 0 0 262140
9e-06 0 0 262139

END 5 Ok

24 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

3.4 Building and Configuring Panda Server

Setting up the build for the Panda Socket Server requires configuring a number of dependencies and creating a suitable
CONFIG file in the root directory so that they can be found.

3.4.1 Dependencies

The following dependencies must be configured before any part of the server can be built.

Zynq cross-compiler toolchain This can be downloaded as part of the Xilinx Vivado build environment for working
with Zynq, or probably any ARMv7-A cross-compiler can be used. This is needed to build all applications
running on Panda.

PandABlocks-FPGA This part of the Panda project must be available before the server can be built, as it contains a
configuration file defining the low level register interface to the Panda firmware.

PandABlocks-rootfs This part of the Panda project is required in order to provide a working kernel build tree, and to
provide the zpkg build tool.

3.4.2 Setting up the CONFIG file

Start by copying the file CONFIG.example to CONFIG in the base directory, and edit the file by commenting out
lines as appropriate and editing them.

The following symbols must be set to point to the appropriate dependencies:

BINUTILS_DIR If the Zynq cross-compiler toolchain is not on the path, this must be set in order to build the kernel
module and the target build. This symbol is not required for building the simulation server or the documentation.

KERNEL_DIR In order to build the kernel module, this symbol must be pointed to the kernel build tree generated by
the PandABlocks-roots build.

PANDA_ROOTFS The zpkg build tool is found here.

The following symbols can all be left at their default values:

BUILD_DIR This configures where the built files will be placed.

PYTHON This configures which Python interpreter will be used for building.

SPHINX_BUILD The sphinx-build Python script used for building the documentation.

DEFAULT_TARGETS This determines which makefile targets are generated when make is run without specifying a
particular target, or when make default is run.

3.4.3 Build Targets

The following build targets for the top level makefile are useful:

default Builds all the targets specified by $(DEFAULT_TARGETS), by default this list is: driver, server,
sim_server, docs, zpkg.

driver Builds the kernel driver module.

server Builds the server version to run on Panda.

sim_server Builds a simulation version of the server to run on the local PC.

docs Builds the documentation.

3.4. Building and Configuring Panda Server 25

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

zpkg Builds the final panda-server zpgk file.

clean Removes the entire $(BUILD_DIR) directory.

3.4.4 Generated Files

In the $(BUILD_DIR) directory the following subdirectories and files will be found. In practice the .zpg file and
html/ directory will be wanted.

driver/ The kernel module required for hardware access is built here.

server/

sim_server/

These two directories are used to build the server to run on Panda, and a simulation server to run on the
local PC.

html/ The documentation is built in html format in this directory.

panda-server@version.zpg
zpkg-panda-server/

A zpkg for the server is built here.

3.5 Configuration Files

On startup the Panda Server loads its configuration from three files: config, registers, description. These
are loaded from the config_d directory in build directory when running the basic simulation, and on Panda the
configuration files are loaded from /opt/share/panda/config_d.

The syntax of each configuration file is documented here. The format of each field definition closely follows the format
documented in Blocks, Fields and Attributes.

The three files have the following distinct functions.

File Description
config Configuration: defines list of blocks, fields in each block, and the behaviour of each field.
registers Registers: for each block and field defines the associated register offsets.
description Description: optionally defines a description string for each block and field.

All files have a common structure and indentation is used for structure. Comments begin with #, blocks are identified
by their name in the first column, and fields are listed at the next level of indentation.

3.5.1 Configuration file config

This file defines all of the blocks and fields available to this instance of Panda and is processed first.

The syntax of a block definition is:

26 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

block-name ["[" count "]"]
[field-definition]*

This means that a block definition consists of a block-name, which can be any word used to name the block, optionally
followed by a block count enclosed in square brackets, followed by any number of indented field-definitions.

The syntax of a field definition is:

field-name field-type [field-type-data]

The field-name names the field, the field-type is a single word from the list documented below, and the field-type-data
depended on the field type as documented.

The field type determines the basic function of the field, what actions can be performed on the field, and how the field
interacts with the hardware. Typically each field corresponds to a single register or function of the block.

Many field type have an associated field subtype which is used to convert between the values show to the user of the
server and the values written to or read from registers.

Field type

The following field types are defined.

Field
param field-subtype [= value]
read field-subtype
write field-subtype
time [> min_value]
bit_out
pos_out [scale [offset [units]]]
ext_out (timestamp | samples | bits group)
bit_mux [= value]
pos_mux
table

param field-subtype [= value] A param field is used to define a single 32-bit value written to a register. The field-
subtype must be specified. Optionally an initial value (only relevant when no state file has been loaded) can be
specified. In this case the initial value is read as a raw unsigned integer which is written directly to the hardware
on startup.

read field-subtype A read field is used for read-only registers. The field-subtype must be specified.

write field-subtype A write field is used for write-only registers which trigger immediate actions on a block. The
field-subtype must be specified, and the action subtype is useful for write fields which take no data.

time [> min_value] Time fields behave like param fields, but need special treatment because the underlying value
is 64-bits and so two registers need to be written.

If desired a minimum valid value can be specified as min_value. This will prevent the writing of values less than
this value and can be read as the .MIN attribute.

bit_out This identifies an output bit.

pos_out [scale [offset [units]]] This identifies a position bus output. Optionally default values for the scale,
offset, and units fields can be specified in the config file. Note that these are only effective when there is no
persistence file to load.

3.5. Configuration Files 27

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

ext_out ext-extra This identifies an entry on the extension bus which needs special treatment. The ext-extra field
must be one of the following values:

ext-extra Description
timestampCapture timestamp as a 64-bit value
samples Captures sample count for data capture.
bits
group

Defines fields which allow the bit bus to be captured. The group number identifies which 32-bit
group of 128 bits is captured.

bit_mux [= value]
pos_mux

These two are configuration settings for selecting inputs, and behave like param fields. As for param a
default value can be assigned to bit_mux, but the only useful value is 129 (ONE).

table [row-words] Tables are treated specially.

Field subtype

The following field subtype can follow a param, read or write field type:

Type
uint [max-value]
int
scalar scale [offset [units]]
bit
action
lut
enum
position
time

Note that enum must be followed by indented lines each consisting of a number followed by a string: the string is the
enumeration value written to the user, the number is the value written to the register.

3.5.2 Register file registers

This file defines the register assignments for each block and register. The body of this file should contain a sequencer
of block and field definitions repeating the config file, except that the field type specification is replaced by a type
specific register definition.

So a block definition is:

block-name { ["S"] block-register | "X" } [extension-module]
[field-definition]*

If the block-register number is prefixed with S then the same block register number can be shared with multiple
blocks: this allows a single hardware implementation to be presented as multiple software blocks. If X is used instead
of specifying block-register then no fields can use registers, so must be extension fields with no register linkage.

28 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

The register number can be followed by an extension-module which is used to identify this block to the extension
server, and will enable use of the extension register syntax defined below.

A field definition is:

field-definition = field-name register-specification

where register-specification depends on the associated field type as follows:

Class Register syntax
param register | write-extension
read register | read-extension
write register | write-extension
time low-register high-register
bit_out (bit-index)N
pos_out (pos-index)N
ext_out timestamp ext-index ext-index
ext_out other ext-index
bit_mux register
pos_mux register
table short size init-reg fill-reg length-reg
table long 2^size base-reg length-reg

where the syntax (...)Nmeans that the given register number is repeated N times where N is the number of instances
of the block. See below for an explanation of read-extension and write-extension.

Extension register syntax

If the extension server is enabled (with the -X command line option on the server) and if an extension module has
been loaded as part of the block specification then param, read, and write subtypes can all be redirected to the
extension server using the read-extension and write-extension syntax:

read-extension = [read-reg]* "X" field-spec
write-extension = [read-reg]* ["W" [write-reg]*] "X" field-spec

In this syntax field-spec is passed through to the associated extension-module to create the binding between this field
and the extension server. The specified read-regs and write-regs will be used when processing this field.

See Extension Server for more details on extension fields.

3.5.3 Description file description

The entire content of the description file is optional. The basic syntax is:

block-name block-description
[field]*

where field is:

field-name field-description

and the description is any newline terminated string in UTF-8 format.

3.5. Configuration Files 29

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

3.6 Extension Server

The extension server is used to implement custom fields. The extension server runs alongsize the Panda socket server
and supports the loading of Python modules with a lightweight remote procedure calling interface from the socket
server.

As described in Configuration Files, individual read, write, param fields can be specified to take their values from and
write to the extension register. At the same time, these extension read and write operations can be linked to hardware
registers.

The extension server is started alongside the socket server, and on PandA looks in /opt/share/panda-fpga/
extensions for extension module files. During development any Python module can be specified as a container for
extension sub-modules.

Connections from the socket server to the extension server are established while reading the registers file. Firstly, if a
block has an extension module specified then this module is loaded from the extensions directory and is associated with
the block. Next, each extension field is processing by calling the appropriate parse_read() or parse_write()
methods.

Depending on the register configuration any number of hardware block registers can be read or written during pro-
cessing of an extension field.

3.6.1 Extension Modules

Each extension module must export a class constructor named Extension. This takes one argument and must support
two methods parse_read and parse_write

class Extension(count)
This class must be defined by each extension module. The class will be instantiated in response to loading a
block register definition of the form:

block-name ["S"] block-register extension-module

The parameter count is set to the number of instances specified for the block in the config file. This class must
provide the following methods, as appropriate, to support read and write register fields:

parse_read(field_spec)
This is called in response to a read-extension line in the register file of the form:

[read-reg]* "X" field-spec

The field-spec is passed as a string to parse_read(), and this method must return a callable of the
following form:

value = read_register(block_num, read_reg1, ..., read_regN)
The first argument block_num is the number of the block instance being called (starting from 0), and
is guaranteed to be less than count as passed to the Extension constructor.

The remaining read_reg1 . . . read_regN argument must match the number of arguments specified in
the read-reg block of the register file. These will be populated by reading the corresponding block
hardware registers before this function is called.

The value returned must be a single integer, this is the value returned when reading this field.

parse_write(field_spec)
This is called in response to a write-extension line in the register file of the form:

30 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

[read-reg]* ["W" [write-reg]*] "X" field-spec

As for parse_read(), field-spec is passed as the argument, and a callable must be returned, of the
following form:

(write_reg1, ..., write_regM) = write_register(block_num, value, read_reg1, ..., read_regN)
The first argument block_num is the number of the block instance being called (starting from 0), and
is guaranteed to be less than count as passed to the Extension constructor.

The second argument value is the value written to this field.

The remaining read_reg1 . . . read_regN argument must match the number of arguments specified in
the read-reg block of the register file. These will be populated by reading the corresponding block
hardware registers before this function is called.

The value returned must be a tuple of integers matching the write-reg block of the register file. The
returned values will be written to the specified hardware registers after processing this function. This
defines the action of writing this field.

3.6.2 Injected Values

Every extension module will have two support values injected into the module when the module is loaded into the
server. These are available to help with the implementation of extensions.

class ServerError(Exception)
Read and write methods should use this exception to report errors. Exceptions of this type are treated specially
and are reported as normal read or write errors.

class ExtensionHelper
This can be used inside an extension module to create extension support for individual fields. Pass a block con-
structor (that must take one argument, the block index) which implements set_ and get_ methods as appropriate,
and this helper will implement the approprate Extension support.

Use this inside the extension module thus:

class MyBlock:
def __init__(self, n):

...

def get_field(self, *regs):
...
return value

def set_field(self, value, *regs):
...
return new_regs

def Extension(count):
return ExtensionHelper(MyBlock, count)

3.7 Starting Panda Server

The Panda socket server is normally automatically started at boot time or when the zpkg-daemon script is run. The
server is started and stopped by the script etc/panda-server installed in /opt/etc/init.d.

The server can optionally be started from the command line, in which case the following arguments are supported:

3.7. Starting Panda Server 31

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

-h This option shows the help text for server, listing all the available command line options.

-p port This specifies the socket port to be used for configuration commands. The default value is 8888.

-d port This specifies the socket port to be used for data capture. The default value is 8889.

-R This can be specified to allow socket reuse via the SO_REUSEADDR socket option.

-c config-dir This specifies the directory where the config, registers, and description files will be loaded
from. This argument must be specified.

-f persistence-file This specifies where the persistence state will be loaded from on startup and saved during opera-
tion. See the -t option below for notes on how this file is updated. If this is not specified then the persistence
state will not be saved.

-t [poll] [“:” [holdoff] [“:” backoff]] This option sets three parameters (in seconds) controlling the pacing of writes
to the persistence file. The behaviour of the system is as follows: every poll seconds the internal state of the
server is checked for configuration changes. If a configuration change is checked then there is a pause of a
further holdoff seconds before the updated state is written. Finally, there is a pause of backoff seconds before
polling for internal changes resumes.

Default values are: poll = 2, holdoff = 10, backoff = 60. The somewhat complex syntax show above allows
all or any of these values to be set with a single -t option. For example, -t:20 specifies holdoff = 20, other
values unchaged.

The intention of this timed behaviour is to reduce file write impact while still keeping on top of changes. With
default settings all parameters will be written to the persistence file within 72 seconds.

-D This option requests that the server is run as a daemon. This is the normal mode of operation when running as a
server, but is generally omitted for debug.

-p pid-file If specified the given file is written with the process ID of the server, and will be deleted on exit.

-T This mode is used for config file validation only: the server exits immediately after loading configuration files.

-M MAC-list If specified then the given file is used to initialise up to four MAC address registers. The file consists of
any number of comment lines (comment lines start with # in the first column) together with four MAC address
lines, each of which is either blank (newline \n only) or is a six octet MAC address written as 2 digit hex
numbers separated by colons.

-X port If specified the server will attempt to connect to an extension server running locally and serving on the
specified port.

3.8 Supporting Documentation

3.8.1 Useful Tools

There are a number of useful tools in the python directory.

sim_server This is run as part of the top level simserver script to provide emulation of the Panda hardware. The
version of this tool provided with the server is very basic, for a more functional emulation use the corresponding
tool in the PandaFPGA project.

tcp_client [server [port]] This tool connects to the Panda server configuration port and helps with sending and
receiving configuration commands.

save-state server file This saves the entire configuration state for the given Panda to the given file.

load-state server file This writes the given configuration file to the Panda.

32 Chapter 3. Building

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

3.8.2 Panda Status LEDs

Two LEDs on Panda show a rough indication of the current status of Panda. There are two LEDs, STA (status) and
DIA (diagnostic); the status LED is green and is used to indicate normal activity, the diagnostic LED is red and is used
to indicate various fault conditions.

The table below shows the possible LED indicators and their meaning:

Mnemonic DIA STA Meaning
- Off Off System not running
BOOTING Off Blink Panda booting
SYSTEM_OK Off On Panda running ok
ATTENTION Blink Off User attention required
NW_ERR Blink Blink Network problem detected
- Blink On (not used, should not occur)
ZPKG_ERR On Off Problem loading installed package
SYSTEM_ERR On Blink System error
- On On (not used, should not occur)

The detailed meaning of these conditions is described below.

BOOTING The system is currently booting. Unless a new image is being configured this should only take a few
seconds, but during image installation this can take a few minutes.

SYSTEM_OK Booting has completed and the system is running normally.

ATTENTION User attention is required. Either a fresh installating is prompting for a MAC address, or no system
packages have been installed. Connect a serial port in the first case, connect to the administration web page on
port 8080 in the second case.

NW_ERR A network error has been detected.

This function is not currently implemented.

ZPKG_ERR An installed package has failed to start. Try power-cycling Panda first, if that fails check the logs and
the serial port for relevant diagnostic messages.

SYSTEM_ERR An internal system error has been detected.

This function is not currently implemented.

3.8. Supporting Documentation 33

panda-server Documentation, Release 3.0b1-10-g54227ee-dirty

34 Chapter 3. Building

Index

E
Extension (built-in class), 30
ExtensionHelper (built-in class), 31

P
parse_read() (Extension method), 30
parse_write() (Extension method), 30

S
ServerError (built-in class), 31

35

	Configuration Interface
	Example Commands

	Streaming Capture Interface
	Building
	Command Interface
	Blocks, Fields and Attributes
	Data Capture
	Building and Configuring Panda Server
	Configuration Files
	Extension Server
	Starting Panda Server
	Supporting Documentation

	Index

